Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Direct detection experiments and the interpretation of their results are sensitive to the velocity structure of the dark matter in our galactic halo. In this work, we extend the formalism that deals with such astrophysics-driven uncertainties, originally introduced in the context of dark-matter-nuclear scattering, to include dark-matter-electron scattering interactions. Using mock data, we demonstrate that the ability to determine the correct dark matter mass and velocity distribution is depleted for recoil spectra which only populate a few low-lying bins, such as models involving a light mediator. We also demonstrate how this formalism allows one to test the compatibility of existing experimental data sets (e.g. SENSEI and EDELWEISS), as well as make predictions for possible future experiments (e.g. GaAs-based detectors).more » « less
-
Typical LHC analyses search for local features in kinematicdistributions. Assumptions about anomalous patterns limit them to arelatively narrow subset of possible signals. Wavelets extractinformation from an entire distribution and decompose it at all scales,simultaneously searching for features over a wide range of scales. Wepropose a systematic wavelet analysis and show how bumps, bump-dipcombinations, and oscillatory patterns are extracted. Our kinematicwavelet analysis kit KWAK provides a publicly available framework toanalyze and visualize general distributions.more » « less
An official website of the United States government

Full Text Available